New Challenges and Opportunities for Model-Based Risk/Safety Assessment

Prof. Antoine B. Rauzy

Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology Trondheim, Norway & Chair Blériot-Fabre CentraleSupélec Paris, France

 \fbox{O} NTNU \rag{NTNU} Norwegian University of Science and Technology

Probabilistic Risk/Safety Assessment

Systems Specifications

- Knowledge in books
- Dedicated low level models (fault trees, block diagrams...)

Games Changers

Model-based systems engineering

NTNU Norwegian University of Science and Technology

From Mechanical to Cyber-Physical Systems

- Software intensive systems: how to model **control mechanisms**?
- Communicating systems: how to integrate safety and security?

New generations of systems are:

- **Opaque**: their states can be observed only by indirect means.
- **Reflective**: they embed models of their own behavior and environment.
- **Deformable**: their architecture changes throughout their mission.

Management of Reliability Data & Co-Simulation

The Promise of Model-Based Risk/Safety Assessment

Modeling systems at **higher level** so to reduce the distance between systems specifications and models (without increasing the complexity of calculations).

AltaRica 3.0

AltaRica 3.0

Guarded Transitions Systems + System Structure Modeling Language

Generalization of usual modeling formalisms (fault trees, block diagrams, Markov chain, stochastic Petri nets...) at no algorithmic cost. Object-oriented model structuring for a better re-use. Modeling patterns.

Model-Based Systems Engineering

Key issues:

- How to manage models through the life cycle of systems?
- How to ensure that models are "speaking" about the same system?

NTNU Norwegian University of Science and Technology

Model Synchronization

Abstraction + Comparison = Synchronization

The Computational Complexity Barrier

NTNU Norwegian University of Science and Technology

Challenges

- Tune artificial intelligence techniques to manage reliability data
 - Machine learning
- Design a new generation of modeling languages and assessment tools
 - Modeling languages
 - Algorithms & heuristics to push the limit of tractable models
 - Suitable abstractions of software parts of complex technical systems
 - Libraries of modeling patterns
 - Model validation techniques
- Integration of reliability engineering with other engineering disciplines
 - Co-simulation
 - Model synchronization